Intersection of algebraic space curves
نویسندگان
چکیده
منابع مشابه
Discriminants of Complete Intersection Space Curves
In this paper, we develop a new approach to the discriminant of a complete intersection curve in the 3-dimensional projective space. By relying on the resultant theory, we first prove a new formula that allows us to define this discriminant without ambiguity and over any commutative ring, in particular in any characteristic. This formula also provides a new method for evaluating and computing t...
متن کاملTopology of real algebraic space curves
In this paper we give a new projection-based algorithm for computing the topology of a real algebraic space curve given implicitly by a set of equations. Under some genericity conditions, which may be reached through a linear change of coordinates, we show that a plane projection of the given curve, together with a special polynomial in the ideal of the curve contains all the information needed...
متن کاملApproximating Algebraic Space Curves by Circular Arcs
We introduce a new method to approximate algebraic space curves. The algorithm combines a subdivision technique with local approximation of piecewise regular algebraic curve segments. The local technique computes pairs of polynomials with modified Taylor expansions and generates approximating circular arcs. We analyze the connection between the generated approximating arcs and the osculating ci...
متن کاملProducing Complete Intersection Monomial Curves in N -space
In this paper, we study the problem of determining set-theoretic and ideal-theoretic complete intersection monomial curves in affine and projective n-space. Starting with a monomial curve which is a set-theoretic (resp. ideal-theoretic) complete intersection in (n − 1)-space we produce infinitely many new examples of monomial curves that are set-theoretic (resp. idealtheoretic) complete interse...
متن کاملIntersection patterns of curves
We prove that for every k ∈ N there is a constant ck > 0 with the following property. Every set of n > 1 continuous curves in the plane, any pair of which intersect in at most k points, has two disjoint subsets A and B, each of size at least ckn, such that either every curve in A intersects all curves in B, or no curve in A intersects any curve in B. This statement does not remain true if we dr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Applied Mathematics
سال: 1991
ISSN: 0166-218X
DOI: 10.1016/0166-218x(91)90062-2